December 13, 2013

A Layered Game Architecture III - Scenes and Directors

Scenes and Directors

Apart from actor AI, states and physics as describe in the first backend post, there is much more to be controlled in a game like:
  • handling collision events
  • watching actor's life power
  • collecting visible actors for each player
  • using gadgets like invisibility, super speed, damage doubling, etc.
  • walking upon special tiles for powering-up
  • opening and closing doors
All this is controlled by various directors. A director is the controller counterpart in a MVC architecture. Its models are actors and scenes.




Scene directors control game scenes. A scene is the model of one part of a running game. Games can have one or multiple scenes.
Examples for scenes are:
  • a shop to buy new weapons 
  • the battlefield where the action takes place
  • a screen to switch levels 
  • a built in mini game
  • an underground dungeon as opposed to the day light world
Now, just like in the real world, directors like to delegate work. Here, there are various sub directors, each specialized for one kind of task. For all the listed tasks at the beginning of this post, there is one sub director.
There are two given abstract implementations of sub directors:
  1. Directors that operate on a (dynamic) list of actors of one defined type, like for example:

    BlackHoleDirector - for droids and bullets
    Loops through its actors and drags them into nearby black holes if applicable.

    ActorLifeDirector - for droids
    Removes droids with a power of zero.

    PhysicsDirector - for droids, bullets and level gadgets
    Listens for added and removed scene actors and notifies the physics module about it. Creates appropriate events for actor collisions.
     
  2. Directors for tasks that are not bound to given actor lists, like for example:

    BulletDroidCollisionDirector
    Does not work on a list of actors, but on incoming collision events between droids and bullets detected by the physics director.

    InvisibilityGadgetDirector
    Does not work on a list of actors either, but on incoming player requests to become invisible. Activates and publishes according looks and disables invisibiltiy after a given time span.

    VisibilityDispatchDirector
    Does not work on a list of actors but on the list of current players. Each player gets a personal list of currently visible actors.
If neither AbstractSubDirector or AbstractActorsSubDirector suits a given task, ISubDirector can be implemented and plugged in as well.

Some important characteristics of sub directors:
  • They allow to modularize game control into smaller maintainable tasks.
  • They are invoked one after another from the game loop.
  • They can be invoked for each game frame or after a defined time span, like every 100ms.
  • They realize a plugin concept for the whole game direction sub system.
  • They can be enabled and disabled at runtime.




December 11, 2013

A Layered Game Architecture II - Backend AI

The first part of A Layered Game Architecture gave an overview of frontend, backend and shared packages. Here, we continue with a look upon the backend components for actors and AI:
  



actor

Each interactable game object is represented as IActor. Actors are controlled, influenced, directed, moved, created and removed by states, goals, game physics and directors.
Actors are the central object in each game. To avoid dependencies to concrete behavioural implementations, each actor has only a IActorBehaviour reference and does not whether it is controlled by states, goals or in any other way. This allows to plug in, for example, your new sophisticated almighty AI controller instead of using goals, or to switch from Box2D physics to any home brewn physics algorithms without affecting other framework and game parts.

state

States offer separate representations of, for example, moving and waiting actors. Furthermore, game events of all kinds like input and collisions events can be sent and received. Typical events are BulletHit, BulletMissed, DesiredHeading.
States could also be used to implement a (primitive) AI. Then, actors would not get a GoalBrainAndStateBehaviour but a simpler StateBehaviour.

physics

The game physics makes sure that actors move and behave according to the physics rules of the game world. It takes care of collisions between multiple actors as well as between actors and the environment. Collision listeners get notified to initiate appropriate reactions. Velocity and acceleration is calculated from given player input and AI events.
Source and target for game physics is IMovable where data for positions, forces, velocities and acceleration is stored. Because a multiplayer client/server game architecture requires to move actors on server as well on client side, movables are parts of the shared base class ICharacter which resides on both client and server side.
The game physics takes desired actor movements as input and applies them to the game world model. Whether movement commands origin from player input or from AI thoughts is of no interest and simply unknown.

goals

Actors can try to achieve goals like finding level items, following and shooting the player or fleeing and hiding. A typical output of a goal is a new heading direction which is handed over to the physics components. Actor velocities or positions are not directly manipulated from goals to let the physics module handle and watch the complete game physics of all objects together once per frame.
Like states, goals can also send and receive game events of any kind.

Goals are a part of an actor's brain which is supported by its memory where recent observations, events and all kind of AI important information is stored and used for subsequent decision finding. Naturally, a brain has an assigned actor, but, to get back to the previously introduced behaviours, actors don't contain references to their brain.

The goal sub system was inspired by the great book Programming Game AI By Example from Mat Buckland.

August 12, 2013

A Layered Game Architecture I - Overview

This post shows an example for a layered game architecture as being developed for the game Diabolus Ex Machina (abbreviated as DEM).
The most important requirements are 
  • being capable for single and multi player games running the same code base and only switching the used net implementation
  • platform independence, for targeting desktops and mobile devices with a common code foundation
  • abstraction and hiding of low level details from, for example, OpenGL and TCP
  • strong focus on dependency management, complete avoidance of cyclic dependencies, broken up into ~16 dedicated projects and accordingly built JARs
  • separation of 3rd party libraries usage into dedicated sub packages and projects
  • emphasis on interfaces for hiding implementation details and providing various implementations 
  • event driven communication overall
The following big picture shows three main components:



1. Libgdx as abstraction for the target platforms Windows, Linux, OSX and Android, as well as for OpenGL graphics, sound and game physics.
2. GameRoots as framework for game logic, ai, network, sprites, tile maps, actor and input handling, sound, etc. However, there is nothing related to any concrete game in there, thus no dependency is pointing up to the DEM component.
3. The game itself with its screens, implemented game rules, lobby and anything else uniquely required.

GameRoots

At the top level, GameRoots is separated into three packages:
  • frontend, the client, responsible for graphics, sound, input and client side movement. Always running on the player's machine
  • backend, the server, holding game logic and AI, controlling all player clients, receiving player input, sending world updates back. Either running on a dedicated game server, or for single player games on the player's computer. In case of the latter, without networking involved.
  • shared, anything needed from both frontend and backend. For example, sent and received events, actor movement, utilities like collections classes and math functions.
Naturally, there is no dependeny between frontend and backend. They must be physically separatable and a game server should be runnable on a headless machine.
Consequently, shared does not know frontend or backend but is used by both packages.


backend

scene
A scene is the place where all game actors live in. All dynamic game objects are actors, regardless whether they are living creatures or dead level items of any sort. Actors of the backend are a relatively abstract view of the game world, with little or no knowledge about graphical representations for example.
Scenes and actors form the model and representation of the game world with the highest number of incoming dependencies.

ai
The place where actors come to life. Actor have a brain which is driven by various goals. An actor brain is always in one state and takes decisions with the help of recorded memories of visited opponents, taken hits, known paths, etc. Typical states are for example MovingState and WaitingState, typical goals ShootGoal, DodgeGoal, WaitGoal, FindPathGoal.
The AI operates on scenes and actors. After taking decisions new events are sent to other actors, to directors and player clients. Events are received from players, directors and the game AI itself.

director
Similiar role like movie directors, only that there is not one but are many specialist directors at the same time. There are specialists for collision detection, building a field-of-view, using inventory and level items, watching health points, applying physics, etc.
Receives player input events and forwards them to addressed actors and responsible directors. Vice versa, directors send events to the AI, other directors and player clients.

navigation
For actors finding paths from point a to point b.

net
Event driven communication with all clients. Uses the "real" network for multiplayer games or an in-memory model for single player games. Does not know about scenes. Only receives events created by directors or AI classes.

management
The game rules and factories for creating new actors at runtime based on predefined build plans.

server
The game server for bringing together network services, connected clients and directors.

frontend

scene
The game world on the client side and the model of the applied MVC pattern. Inhabited by puppets, the client side representation of game actors. Puppets are controlled by server events and, for a responsive game feeling, immediately by player input.

controller
The controller of the applied MVC pattern. Moves puppets according to server events, player input and game physics.Works on received server events and sends player input back to the server.

view
The view of the applied MVC pattern. Home of view puppets, the visual representation of scene puppets. Each scene puppet can be shown in different and multiple ways, in 2d, 3d, as map point, etc.

input
Listens for player input and forwards it to controller classes.

net
For communicating with the game server. Sending and receiving events as well as downloading game resources. Concrete implementations allow to communicate directly by event queues inside a VM for single player games or by TCP for multiplayer games.

sound
Anything for the sonic game experience independent of any particular audio player implementation. Namely, loading and organizing of sound resources, setting volume and pan positions dependent on player positions.

gdx
This is the interface to the Libgdx game library. Usage of textures, lights, particles, playing of sound, etc. is encapsulated here and only here so that the main part of the frontend packages is independent of 3rd party libraries and would allow to switch to other libraries like Java2d for example.

shared

Everything that is required and useful for both client and server.
For example, actor movement and game physics are applied in the same way on both client and server side.
Naturally, events exchanged between client and server are located here as well.